Home
Class 12
MATHS
The value of Lim(x rarr0)((2)/((tan x-co...

The value of `Lim_(x rarr0)((2)/((tan x-cos x-x+1))int_(0)^(x)(root(3)(1+sin^(2)t)-root(4)(1-2tan t))dt` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of : lim_(x rarr0)(cosx-1)/(x) is

lim_(x rarr0)(2x^2-3x)/x

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x rarr0)(1+2x)^(5/x)

3) lim_(x rarr0)[(1)/(x)-cot x]

1) Evaluate lim_(x rarr0)(|x|)/(x)

lim_(x rarr0)sqrt(x)=

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

lim_(x rarr0)(x-sin x)/(tan^(2)x)