Home
Class 12
MATHS
int e^t sint dt...

`int e^t sint dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =int_o^x sint/t dt which of the following is true?

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

If int_0^1 (e^t dt)/(t+1)=a, then evaluate int_(b-1)^b (e^t dt)/(t-b-1)

f(x)=int_0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi), then f(x) is decreasing in :

int_0^1 (tan^-1x)/xdx-1/2int_0^(pi/2) t/sint dt has the value (A) -1 (B) 1 (C) 2 (D) 0

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi) e^t(sin^6 at +cos^4 at)dt)/(int_0^pi e^t (sin^6 at +cos^4 at)dt)=L

If f(x)=int_0^x(sint)/t dt ,x >0, then

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to

If f(x)=overset(x)underset(0)int(sint)/(t)dt,xgt0, then