Home
Class 14
MATHS
What is the length of the line segment A...

What is the length of the line segment AB, given point A is ` (a cos theta, a sin theta )` and point B is ` (a sin theta , - a costheta ) ` ?

A

` (a)/(sqrt(2))`

B

` a sqrt""2 `

C

`2 a `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the line segment AB given the points A and B, we will use the distance formula. The coordinates of point A are \( A(a \cos \theta, a \sin \theta) \) and the coordinates of point B are \( B(a \sin \theta, -a \cos \theta) \). ### Step-by-step Solution: 1. **Identify the coordinates of points A and B:** - Point A: \( (x_1, y_1) = (a \cos \theta, a \sin \theta) \) - Point B: \( (x_2, y_2) = (a \sin \theta, -a \cos \theta) \) 2. **Apply the distance formula:** The distance \( AB \) between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] 3. **Substitute the coordinates into the formula:** \[ AB = \sqrt{(a \sin \theta - a \cos \theta)^2 + (-a \cos \theta - a \sin \theta)^2} \] 4. **Simplify the expressions:** - For the first term: \[ (a \sin \theta - a \cos \theta)^2 = a^2 (\sin \theta - \cos \theta)^2 \] - For the second term: \[ (-a \cos \theta - a \sin \theta)^2 = a^2 (\cos \theta + \sin \theta)^2 \] 5. **Combine the terms:** \[ AB = \sqrt{a^2 (\sin \theta - \cos \theta)^2 + a^2 (\sin \theta + \cos \theta)^2} \] \[ = a \sqrt{(\sin \theta - \cos \theta)^2 + (\sin \theta + \cos \theta)^2} \] 6. **Expand the squares:** - Expanding \( (\sin \theta - \cos \theta)^2 \): \[ = \sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta \] - Expanding \( (\sin \theta + \cos \theta)^2 \): \[ = \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta \] 7. **Combine the expanded terms:** \[ = (\sin^2 \theta + \cos^2 \theta - 2 \sin \theta \cos \theta) + (\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta) \] \[ = 2(\sin^2 \theta + \cos^2 \theta) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = 2 \cdot 1 = 2 \] 8. **Final calculation:** \[ AB = a \sqrt{2} \] ### Conclusion: The length of the line segment AB is \( a \sqrt{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The distance between the points (a cos theta+b sin theta,0) and (0,a sin theta-b cos theta)

If a cos theta + b sin theta = c, then what is the value of a sin theta - b cos theta ?

If sin theta + costheta = m and sin theta - cos theta = n , then

If the distance between two points (a cos theta,a sin theta) and (a cos phi,a sin phi) is 2a then theta is

what is the relation between a cos theta+b sin theta=p and a sin theta-b cos theta=q

If x =a (cos theta +theta sin theta ), y =a (sin theta -theta costheta ) ,then (dy)/(dx) =

costheta-cos2theta=sin3theta

Find the distance between the points : (cos theta, sin theta), (sin theta, cos theta)

Prove that the distance between the points (a+r cos theta,b+r sin theta) and (a,b) is independent of theta