Home
Class 14
MATHS
If cot alpha = (4)/( 7 . 5) then what is...

If `cot alpha = (4)/( 7 . 5)` then what is the value of `sec alpha` and `sin alpha `

A

` (17)/(8),(17)/(15)`

B

`(17)/(8),(15)/(17)`

C

`(8)/(15),(15)/(17)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where cot alpha = 4/7.5, we need to find the values of sec alpha and sin alpha. Let's go through the steps systematically. ### Step 1: Convert cot alpha to a simpler fraction Given: \[ \cot \alpha = \frac{4}{7.5} \] To eliminate the decimal, we can multiply both the numerator and the denominator by 2: \[ \cot \alpha = \frac{4 \times 2}{7.5 \times 2} = \frac{8}{15} \] ### Step 2: Understand the relationship of cotangent The cotangent of an angle in a right triangle is defined as: \[ \cot \alpha = \frac{\text{Base}}{\text{Perpendicular}} \] From the fraction \( \frac{8}{15} \), we can identify: - Base = 8 - Perpendicular = 15 ### Step 3: Calculate the hypotenuse Using the Pythagorean theorem: \[ h = \sqrt{(\text{Base})^2 + (\text{Perpendicular})^2} \] \[ h = \sqrt{8^2 + 15^2} = \sqrt{64 + 225} = \sqrt{289} = 17 \] ### Step 4: Calculate sec alpha The secant of an angle is defined as: \[ \sec \alpha = \frac{\text{Hypotenuse}}{\text{Base}} \] Substituting the values we found: \[ \sec \alpha = \frac{17}{8} \] ### Step 5: Calculate sin alpha The sine of an angle is defined as: \[ \sin \alpha = \frac{\text{Perpendicular}}{\text{Hypotenuse}} \] Substituting the values we found: \[ \sin \alpha = \frac{15}{17} \] ### Final Answers Thus, we have: - \( \sec \alpha = \frac{17}{8} \) - \( \sin \alpha = \frac{15}{17} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha=(4)/(5) , then find the value of sin 2 alpha .

If alpha=(pi)/(17), then the value of (sin21 alpha-sin alpha)/(sin16 alpha+sin4 alpha) is equal to

If a is an angle in first quadrant such that "cosec"^(4) alpha = 17+"cot"^(4) alpha ,then what is the value of sin alpha ?

If sec(theta-alpha), sectheta and sec(theta+alpha) are in AP, where cos alpha ne 1 then what is the value of sin^2 theta + cos alpha ?

If alpha is the angle of first quadrant such that cosec^4 alpha = 17 + cot^4 alpha , then what is the value of sin alpha ?

If sin^2 theta + sin^2 alpha =1 , then what is the value of cot (theta+alpha) ?

If cot(alpha+beta)=0, then write the value of sin(alpha+2 beta)

if 7 sin alpha = 24 cos alpha 0 lt alpha lt pi/2 . Then the value of 14 tan alpha - 75 cos alpha-7 sec alpha is

If 15 sin^(4) alpha+10 cos^(4) alpha=6 , some alpha in R , then the value of 27 sec^(6) alpha+8 cosec^(6) alpha is equal to

What is the value of (sin^4alpha-cos^4 alpha+1)cosec^2 alpha .