Home
Class 14
MATHS
If cos alpha = (12)/(13) then what is t...

If ` cos alpha = (12)/(13)` then what is the value of ` ( cosec alpha )/( 1 + sec alpha )` ?

A

`(156)/(125)`

B

`(125)/(156)`

C

`(5)/(7)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{\csc \alpha}{1 + \sec \alpha} \) given that \( \cos \alpha = \frac{12}{13} \). ### Step-by-step Solution: 1. **Identify the values of sine and cosine:** We know that \( \cos \alpha = \frac{12}{13} \). To find \( \sin \alpha \), we can use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting the value of \( \cos \alpha \): \[ \sin^2 \alpha + \left(\frac{12}{13}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{144}{169} = 1 \] \[ \sin^2 \alpha = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169} \] Therefore, \[ \sin \alpha = \frac{5}{13} \] 2. **Calculate cosecant and secant:** The cosecant and secant functions are defined as: \[ \csc \alpha = \frac{1}{\sin \alpha} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \] \[ \sec \alpha = \frac{1}{\cos \alpha} = \frac{1}{\frac{12}{13}} = \frac{13}{12} \] 3. **Substituting into the expression:** Now we substitute \( \csc \alpha \) and \( \sec \alpha \) into the expression \( \frac{\csc \alpha}{1 + \sec \alpha} \): \[ \frac{\csc \alpha}{1 + \sec \alpha} = \frac{\frac{13}{5}}{1 + \frac{13}{12}} \] 4. **Simplifying the denominator:** To simplify the denominator: \[ 1 + \frac{13}{12} = \frac{12}{12} + \frac{13}{12} = \frac{25}{12} \] 5. **Final calculation:** Now substituting back into the expression: \[ \frac{\frac{13}{5}}{\frac{25}{12}} = \frac{13}{5} \times \frac{12}{25} = \frac{13 \times 12}{5 \times 25} = \frac{156}{125} \] Thus, the value of \( \frac{\csc \alpha}{1 + \sec \alpha} \) is \( \frac{156}{125} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec alpha=(2)/(sqrt3), the find the value of (1-"cosec "alpha)/(1+"cosec "alpha) , where alpha is in IV quadrant.

What is the value of (sin^4alpha-cos^4 alpha+1)cosec^2 alpha .

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If alpha=(pi)/(7) then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If alpha=(pi)/(7), then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If cos alpha=(5)/(13) and 0 lt alpha lt 90^(@) , then the value of cot alpha+"cosec "alpha is

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 + cos alpha + sinalpha)/(1 + sin alpha) is equal to

If tan alpha=2 , then the value of (cosec^2 alpha-sec^2 alpha)/(cosec^2 alpha+sec^2 alpha) is यदि tan alpha=2 है, तो (cosec^2 alpha-sec^2 alpha)/(cosec^2 alpha+sec^2 alpha) का मान ज्ञात करें।

If sinalpha=5/13 and pi/2ltalphaltpi then the value of (secalpha+ tan alpha)/(cosec alpha - cot alpha)

If tan alpha = (5)/(12) ,find the value of sec alpha .