Home
Class 14
MATHS
If tan alpha + cot alpha =7 . What is t...

If ` tan alpha + cot alpha =7` . What is the value of tan ` alpha - cot alpha ` ?

A

` 2 sqrt""5 `

B

` sqrt"" 5`

C

` 3 sqrt"" 5`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \alpha + \cot \alpha = 7 \) and find the value of \( \tan \alpha - \cot \alpha \), we can follow these steps: ### Step 1: Define Variables Let \( x = \tan \alpha \). Then, we have: \[ \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{x} \] Thus, the equation becomes: \[ x + \frac{1}{x} = 7 \] ### Step 2: Multiply by \( x \) To eliminate the fraction, multiply both sides by \( x \): \[ x^2 + 1 = 7x \] ### Step 3: Rearrange the Equation Rearranging gives us a standard quadratic equation: \[ x^2 - 7x + 1 = 0 \] ### Step 4: Use the Quadratic Formula We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -7, c = 1 \): \[ x = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{7 \pm \sqrt{49 - 4}}{2} \] \[ x = \frac{7 \pm \sqrt{45}}{2} \] \[ x = \frac{7 \pm 3\sqrt{5}}{2} \] ### Step 5: Find \( \tan \alpha - \cot \alpha \) Now, we need to find \( \tan \alpha - \cot \alpha \): \[ \tan \alpha - \cot \alpha = x - \frac{1}{x} \] Using the identity \( (x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2} \): \[ (x - \frac{1}{x})^2 = (x + \frac{1}{x})^2 - 4 \] Substituting \( x + \frac{1}{x} = 7 \): \[ (x - \frac{1}{x})^2 = 7^2 - 4 = 49 - 4 = 45 \] Taking the square root: \[ x - \frac{1}{x} = \sqrt{45} = 3\sqrt{5} \] ### Final Answer Thus, the value of \( \tan \alpha - \cot \alpha \) is: \[ \boxed{3\sqrt{5}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha +cot alpha =a then the value of tan^(4) alpha +cot^(4) alpha=

If tan alpha+cot alpha=2 then

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If tan alpha = sqrt2 + 1 , the value of tan alpha- cot alpha is:

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is

If tan alpha+cot alpha=a, then the value of tan^(4)alpha+cot^(4)alpha is equal to

if tan alpha+cot alpha=p then find the value of a.tan^(2)alpha+cot^(2)alpha b.tan^(3)alpha+cot^(3)alpha

If tan alpha+cot alpha=m then value of tan^(4)alpha+cot^(4)alpha is