Home
Class 14
MATHS
What is the value of tan 20^(@) tan 60^...

What is the value of ` tan 20^(@) tan 60^(@) tan 70^(@)` ?

A

3

B

`sqrt""3`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 20^\circ \tan 60^\circ \tan 70^\circ \), we can use some trigonometric identities and properties. Let's break down the solution step by step. ### Step 1: Use the identity for tangent We know that: \[ \tan(90^\circ - \theta) = \cot(\theta) \] Using this identity, we can express \( \tan 20^\circ \) in terms of \( \tan 70^\circ \): \[ \tan 20^\circ = \tan(90^\circ - 70^\circ) = \cot 70^\circ \] ### Step 2: Substitute the identity into the expression Now we can rewrite the original expression: \[ \tan 20^\circ \tan 60^\circ \tan 70^\circ = \cot 70^\circ \tan 60^\circ \tan 70^\circ \] ### Step 3: Simplify the expression Recall that: \[ \cot \theta = \frac{1}{\tan \theta} \] Thus, we can substitute \( \cot 70^\circ \) as follows: \[ \cot 70^\circ = \frac{1}{\tan 70^\circ} \] So, the expression becomes: \[ \frac{1}{\tan 70^\circ} \tan 60^\circ \tan 70^\circ \] ### Step 4: Cancel out \( \tan 70^\circ \) Now we can cancel \( \tan 70^\circ \): \[ = \tan 60^\circ \] ### Step 5: Find the value of \( \tan 60^\circ \) We know from trigonometric values that: \[ \tan 60^\circ = \sqrt{3} \] ### Final Answer Thus, the value of \( \tan 20^\circ \tan 60^\circ \tan 70^\circ \) is: \[ \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (2+tan60^(@)) ?

Find the value of tan70^(@) .

What is the value of (2 - tan60^(@)) ?

Find the value of tan20^(@)+2tan50^(@)

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

The value of tan 20^(@) tan 40^(@) tan 80^(@) is equal to

The value of tan 15^(@) tan20^(@) tan 70^(@) tan75 is