Home
Class 14
MATHS
If sin alpha = (X)/( sqrt(X ^(2) + Y^(2...

If sin ` alpha = (X)/( sqrt(X ^(2) + Y^(2)))` then what is the value of tan ` alpha `

A

x/y

B

y/x

C

y

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan \alpha \) given that \( \sin \alpha = \frac{X}{\sqrt{X^2 + Y^2}} \), we can follow these steps: ### Step 1: Identify the components of the triangle From the definition of sine, we know: \[ \sin \alpha = \frac{\text{Perpendicular}}{\text{Hypotenuse}} \] In this case, we have: - Perpendicular = \( X \) - Hypotenuse = \( \sqrt{X^2 + Y^2} \) ### Step 2: Use the Pythagorean theorem to find the base According to the Pythagorean theorem, we can find the base (adjacent side) using: \[ \text{Base}^2 = \text{Hypotenuse}^2 - \text{Perpendicular}^2 \] Substituting the values we have: \[ \text{Base}^2 = (\sqrt{X^2 + Y^2})^2 - X^2 \] This simplifies to: \[ \text{Base}^2 = (X^2 + Y^2) - X^2 = Y^2 \] Taking the square root gives us: \[ \text{Base} = Y \] ### Step 3: Calculate \( \tan \alpha \) Now that we have both the perpendicular and the base, we can find \( \tan \alpha \): \[ \tan \alpha = \frac{\text{Perpendicular}}{\text{Base}} = \frac{X}{Y} \] ### Final Answer Thus, the value of \( \tan \alpha \) is: \[ \tan \alpha = \frac{X}{Y} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x cos alpha +y sin alpha = 4 is tangent to (x^(2))/(25) +(y^(2))/(9) =1 , then the value of alpha is

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta + alpha) + 2 tan alpha is

If 0

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If (cos^(4)alpha)/(x)+(sin^(4)alpha)/(y)=(1)/(x+y) then prove that the value of (dy)/(dx) is tan ^(2)alpha

sin alpha=(2xy)/(x^(2)+y^(2))rArr sec alpha-tan alpha=

sin alpha=(2xy)/(x^(2)+y^(2))rArr sec alpha-tan alpha=

If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is

If 3sin alpha = sin beta!=0 , then the value of |(tan((alpha + beta)/2))/(tan((alpha-beta)/2))|