Home
Class 14
MATHS
If cot alpha = (2ab)/( a^(2) - b^(2)) t...

If cot ` alpha = (2ab)/( a^(2) - b^(2))` then what is the value of cos `alpha ` ?

A

` (2ab)/(a^(2)+b^(2))`

B

` (2ab)/(a^(2) - b^(2))`

C

`(a^(2) - b^(2))/(2ab)`

D

`(a^(2)+ b^(2))/(2ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \alpha \) given that \( \cot \alpha = \frac{2ab}{a^2 - b^2} \), we can follow these steps: ### Step 1: Understand the relationship between cotangent and cosine We know that: \[ \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \] This means we can express \( \cos \alpha \) in terms of \( \sin \alpha \) and \( \cot \alpha \): \[ \cos \alpha = \cot \alpha \cdot \sin \alpha \] ### Step 2: Express \( \sin \alpha \) in terms of \( \cot \alpha \) From the cotangent definition: \[ \sin \alpha = \frac{1}{\sqrt{1 + \cot^2 \alpha}} \] Substituting \( \cot \alpha \): \[ \sin \alpha = \frac{1}{\sqrt{1 + \left(\frac{2ab}{a^2 - b^2}\right)^2}} \] ### Step 3: Calculate \( \cot^2 \alpha \) Calculating \( \cot^2 \alpha \): \[ \cot^2 \alpha = \left(\frac{2ab}{a^2 - b^2}\right)^2 = \frac{4a^2b^2}{(a^2 - b^2)^2} \] ### Step 4: Substitute \( \cot^2 \alpha \) into the sine equation Now substituting back into the sine equation: \[ \sin \alpha = \frac{1}{\sqrt{1 + \frac{4a^2b^2}{(a^2 - b^2)^2}}} \] This simplifies to: \[ \sin \alpha = \frac{(a^2 - b^2)}{\sqrt{(a^2 - b^2)^2 + 4a^2b^2}} = \frac{(a^2 - b^2)}{\sqrt{a^4 - 2a^2b^2 + b^4 + 4a^2b^2}} = \frac{(a^2 - b^2)}{\sqrt{a^4 + 2a^2b^2 + b^4}} = \frac{(a^2 - b^2)}{(a^2 + b^2)} \] ### Step 5: Substitute \( \sin \alpha \) back to find \( \cos \alpha \) Now substituting \( \sin \alpha \) back into the equation for \( \cos \alpha \): \[ \cos \alpha = \cot \alpha \cdot \sin \alpha = \frac{2ab}{a^2 - b^2} \cdot \frac{(a^2 - b^2)}{(a^2 + b^2)} = \frac{2ab}{(a^2 + b^2)} \] ### Final Answer Thus, the value of \( \cos \alpha \) is: \[ \cos \alpha = \frac{2ab}{a^2 + b^2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^2 theta + sin^2 alpha =1 , then what is the value of cot (theta+alpha) ?

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

If sec^(2)alpha+cos^(2)alpha=2 , then find the value of sec alpha+ cos alpha .

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is

If alpha=(pi)/(7), then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If alpha=(pi)/(7) then find the value of ((1)/(cos alpha)+(2cos alpha)/(cos2 alpha))

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?