Home
Class 14
MATHS
In Delta PQR , if angle PQR = 90^(@), P...

In ` Delta PQR` , if `angle PQR = 90^(@), PR = sqrt"" 5` and `PQ - RQ = 2` then what is the value of `sin R - cos R` ?

A

` (2)/( sqrt(5))`

B

` ( sqrt(5))/(2)`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the triangle PQR, where angle PQR is 90 degrees, PR is given as \( \sqrt{5} \), and the difference between sides PQ and RQ is 2. ### Step 1: Set up the triangle We have triangle PQR with: - Angle PQR = 90° - PR (hypotenuse) = \( \sqrt{5} \) - Let PQ = x and RQ = y. ### Step 2: Write the equation based on given information From the problem, we know: \[ PQ - RQ = 2 \] This can be expressed as: \[ x - y = 2 \] From this, we can express \( x \) in terms of \( y \): \[ x = y + 2 \] ### Step 3: Apply the Pythagorean theorem Since angle PQR is 90 degrees, we can apply the Pythagorean theorem: \[ PR^2 = PQ^2 + RQ^2 \] Substituting the known values: \[ (\sqrt{5})^2 = x^2 + y^2 \] This simplifies to: \[ 5 = x^2 + y^2 \] ### Step 4: Substitute \( x \) into the Pythagorean equation Now substitute \( x = y + 2 \) into the equation: \[ 5 = (y + 2)^2 + y^2 \] Expanding this gives: \[ 5 = (y^2 + 4y + 4) + y^2 \] Combining like terms: \[ 5 = 2y^2 + 4y + 4 \] ### Step 5: Rearranging the equation Rearranging the equation gives: \[ 2y^2 + 4y + 4 - 5 = 0 \] This simplifies to: \[ 2y^2 + 4y - 1 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = 4, c = -1 \): \[ y = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] Calculating the discriminant: \[ y = \frac{-4 \pm \sqrt{16 + 8}}{4} \] \[ y = \frac{-4 \pm \sqrt{24}}{4} \] \[ y = \frac{-4 \pm 2\sqrt{6}}{4} \] \[ y = \frac{-2 \pm \sqrt{6}}{2} \] ### Step 7: Find values of \( y \) and \( x \) Taking the positive root (since lengths cannot be negative): \[ y = \frac{-2 + \sqrt{6}}{2} \] Now substituting back to find \( x \): \[ x = y + 2 = \frac{-2 + \sqrt{6}}{2} + 2 = \frac{-2 + \sqrt{6} + 4}{2} = \frac{2 + \sqrt{6}}{2} \] ### Step 8: Calculate \( \sin R \) and \( \cos R \) Now we find \( \sin R \) and \( \cos R \): - \( \sin R = \frac{PQ}{PR} = \frac{x}{\sqrt{5}} = \frac{\frac{2 + \sqrt{6}}{2}}{\sqrt{5}} = \frac{2 + \sqrt{6}}{2\sqrt{5}} \) - \( \cos R = \frac{RQ}{PR} = \frac{y}{\sqrt{5}} = \frac{\frac{-2 + \sqrt{6}}{2}}{\sqrt{5}} = \frac{-2 + \sqrt{6}}{2\sqrt{5}} \) ### Step 9: Calculate \( \sin R - \cos R \) Now we compute: \[ \sin R - \cos R = \frac{2 + \sqrt{6}}{2\sqrt{5}} - \frac{-2 + \sqrt{6}}{2\sqrt{5}} \] Combining the fractions: \[ = \frac{(2 + \sqrt{6}) - (-2 + \sqrt{6})}{2\sqrt{5}} = \frac{2 + \sqrt{6} + 2 - \sqrt{6}}{2\sqrt{5}} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} \] ### Final Answer Thus, the value of \( \sin R - \cos R \) is: \[ \frac{2}{\sqrt{5}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta PQR , If angle R gt angle Q, then

In a triangle PQR, anglePQR=90^(@), PQ = 10 cm and PR = 26 cm , then what is the value (in cm) of inradius of incircle?

In a triangle PQR , angle Q = 90^(@) . If PQ = 12 cm " and " QR = 5 cm, then what is the radius ( in cm ) of the circumcircle of the triangle ?

In a Delta PQR , angle Q = 90^(@) , PQ = 5 ,QR = 12 find QM if M is centroid

In right-angled triangle PQR, if angleP=60^(@), angle R=30^(@) and PR =12, then find the values of PQ and QR.

In a triangle PQR , angle P = 110^(@) , PQ = PR . Find angle Q and angle R