Home
Class 10
MATHS
If A, B and C are interior angles of tri...

If A, B and C are interior angles of triangle ABC, then show that `sin ((B+C)/(2)) = cos ""(A)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`sin ((B+C)/(2)) = cos ""(A)/(2)` Hence proved.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B and C are interior angles of a triangle ABC, then show that tan((A + B)/(2)) = cot ""(C)/(2)

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot C//(2)

If A, B, C are interior angle of triangle ABC then show that sin ((A+B)/2) + cos (( A+ B)/2) = cos (C/2) + sin (C/2)

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A, B, C are angles of a triangle, then prove that sin^(2)""A/2+sin^(2)""B/2-sin^(2)""C/2=1-2cos""A/2cos""B/2sin""C/2 .

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C