Home
Class 10
MATHS
Show that tan ^(2) theta +tan ^(4) thet...

Show that ` tan ^(2) theta +tan ^(4) theta =sec ^(4) theta -sec ^(2) theta `

Text Solution

Verified by Experts

The correct Answer is:
`sec^(4) theta - sec^(2) theta` = R.H.S
Promotional Banner

Similar Questions

Explore conceptually related problems

"cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (cot^(2) theta - tan^(2) theta ) (sec^(2) theta * "cosec"^(2) theta -1)=

sec^(4) theta (1-sin^4 theta ) - tan^(2) theta =

If sec^(4) theta+ sec^(2) theta = 10 +tan^(4)theta + tan^(2) theta , then sin^(2) theta

Prove that (tan theta + cot theta)^(2) = "sec"^(2) theta + "cosec"^(2)theta = "sec"^(2) theta. "cosec"^(2) theta .

x = asec^(3) theta tan theta , y = tan^(3) theta sec theta then sin^(2) theta =

2 sec^(2) theta - sec^(4) theta - 2 "cosec"^(2) theta + " cosec"^(4) theta =

Show that cot theta +tan theta =sec theta cosec theta

If tan theta =(1)/(sqrt(7)) and theta is an acute angle , then ("cosec"^(2) theta - sec^(2) theta )/( "cosec"^(2) theta + sec^(2) theta =

If tan^(2) theta=1- k^(2) then sec theta+ tan^(3) theta "cosec" theta=