Home
Class 10
MATHS
Show that ((1+tan^(2) A)/(1+ cot^(2) A))...

Show that `((1+tan^(2) A)/(1+ cot^(2) A))=((1-tan A)/(1- cot A))^(2) = tan^(2) A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ((1+tan ^(2) A) /(1+cot ^(2) A ) ) =((1+ tan )/( 1-cot A ))^(2)= tan ^(2) A

Show that (1- tan ^(2) A ) /( cot ^(2) A-1) =tan ^(2) A

( tan^(3) theta )/( 1+ tan^(2) theta )+ ( cot^(3) theta )/( 1+ cot^(2) theta )=

(tan A + tan B)/( cot A + cot B)+(1- tan A tan B)/( 1- cot A cot B)=

Show that tan[2 tan^(-1)((sqrt(5)-1)/(2))]=2

Show that Tan^(-1) 1/7 + Tan^(-1) 1/8 = Cot^(-1) 201/43 + Cot^(-1) 18

tan h^(-1) ((1)/(2)) + cot h^(-1) (2) =

If sin 2 theta=k then the value of (tan^(3) theta)/(1+tan^(2) theta)+(cot^(3) theta)/(1+cot^(2) theta)=