Home
Class 12
MATHS
7. lim(x->0)(sqrt(8+x^4)-sqrt(8-x^4))/x^...

7. `lim_(x->0)(sqrt(8+x^4)-sqrt(8-x^4))/x^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

(a) lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(x)

lim_(x rarr0)(sqrt(4+x)-sqrt(5))/(x-1)

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=

"lim_(x rarr0)(sqrt(4+x)-sqrt(5))/(x-1)

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

lim_(x-> -1) (sqrt(x^2+8)-3)/(x+1)

lim_(xrarr+1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(x rarr0)(3sqrt(1+x^(2))-4sqrt(1-2x))/(x+x^(2)) is equal to

lim_(x rarr0)(sqrt(x+4)-2)/(x)