Home
Class 12
MATHS
Find (dy)/(dx),if : (i) x=y(1+log x)...

Find `(dy)/(dx)`,if : (i) `x=y(1+log x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) where (i) y=(cosx log x)

Find (dy)/(dx) where (i) y=e^(log x)+tanx

Find (dy)/(dx) , if y=[log (log (log x))]^(2)

a) Find (dy)/(dx) where (i) y=x^(log x)+(log x)^(x) (ii) y=sin^(-1)((x)/(sqrt(a^(2)+x^(2))))

Find (dy)/(dx) where (i) y=x^(log x)+(log x)^(x) (ii) y=sin^(-1)((x)/(sqrt(a^(2)+x^(2))))

Find (dy)/(dx) , if y =(log x)^(x) + (x)^(log x)

Find (dy)/(dx) if,y=(e^(ax)sec x log x)/(sqrt(1-2x))

Find (dy)/(dx) for y=(sin x)^(log x)

Find(dy)/(dx) for y=x sin x log x

Find (dy)/(dx) when y= (x^(log x)) ( log x)^(x), x gt 1