Home
Class 11
MATHS
1. lim(n rarr oo)(n+n^(2)+n^(3)+...*n^(n...

1. `lim_(n rarr oo)(n+n^(2)+n^(3)+...*n^(n))/(1^(n)+1^(n)+3^(n)+cdots+n^(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)3^(1/n) equals

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]