Home
Class 12
MATHS
Find the value of lim(x->0) log(1+x)/(4^...

Find the value of `lim_(x->0) log(1+x)/(4^(x)-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

5.Find the value of lim_(x->0) log(1+x)/(x)

5.Find the value of lim_(x->0) log(1+x)/(x)

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

If 0ltlog_(e)xltsqrt(x) for all xlt1, then find the value of lim_(xtooo) (log_(e)x)/(x).

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Find the value of lim_(x->0)(7^(x)-1)^(2)/(x log(1+x))

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Find the value of lim_(x rarr0)(ln(1+{x}))/({x}) where {x} denotes the fractional part of x .

lim_(x rarr0)(log(1+x))/(x)=1

Find the value of |(lim_( x to 1) (x^x-1)/(x log x )) /( lim_( xto0) (log (1-3x))/x)|