Home
Class 11
MATHS
Evaluate (a+bcostheta)^2+(bsintheta)^2...

Evaluate `(a+bcostheta)^2+(bsintheta)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If btantheta=a , the value of (asintheta-bcostheta)/(asintheta+bcostheta) (a) (a-b)/(a^2+b^2) (b) (a+b)/(a^2+b^2) (c) (a^2+b^2)/(a^2-b^2) (d) (a^2-b^2)/(a^2+b^2)

If cottheta=(b)/(a) ,show that (asintheta-bcostheta)/(asintheta+bcostheta)=(a^(2)-b^(2))/(a^(2)+b^(2)) .

Find the equations of the tangent and the normal to the curve (x^2)/(a^2)+(y^2)/(b^2)=1 at (acostheta,\ bsintheta) at the indicated points

If ((asintheta-bcostheta)/(asintheta+bcostheta))=((a^2-b^2)/(a^2+b^2))^k and tan theta=a/b then k=

If agtbgt0andf(theta)=((a^(2)-b^(2))costheta)/(a-bsintheta), then the maximum value of f(theta), is

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=acostheta,y=bsintheta

If (9a)/(costheta)+(5b)/(sintheta)=56 and (9asintheta)/(cos^(2)theta)-(5bcostheta)/(sin^(2)theta)=0 If the value of [(9a)^(2/3)+(5b)^(2/3)]^(3)=(8K)^(2) Then K is ………..

Let alpha, beta are the root of equation acostheta + bsintheta = c . Which of the following is/are true.

Let alpha, beta are the root of equation acostheta + bsintheta = c . If alpha = 30^(@) and beta = 60^(@) such that a, b, c represent sides of a DeltaABC then