Home
Class 10
MATHS
Prove that 1/(1+tan^2theta)+1/(1+cot^2th...

Prove that `1/(1+tan^2theta)+1/(1+cot^2theta)`=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove: (1+tan^2theta)/(1+cot^2theta)=((1-tantheta)/(1-cottheta))^2=tan^2theta

Prove that 1+cot^(2) theta = cosec^(2) theta

Prove that : (i) (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)=1 (ii) sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + sec theta cosec theta

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta) = (sec theta cosec theta +1)

Prove that (1+sin 2theta)/(1-sin 2theta) = ((1+tan theta)/(1-tan theta))^2

Prove: (tan^3theta)/(1+tan^2theta)+(cot^3theta)/(1+cot^2theta)=secthetacos e c\ theta-2sinthetacostheta