Home
Class 12
MATHS
Let J=int(0)^(1)cot^(-1)(1-x+x^(2))dx an...

Let `J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx` and `K=` `int_(0)^(1)tan^(-1)xdx`.If `J=lambda K (lambda in N)`, then `lambda` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(0)^(1)tan^(-1)xdx

int_0^1cot^(- 1)(1-x+x^2)dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int (dx)/sqrt(1-tan^2 x)=1/lambda sin^-1 (lambdasinx)+C ,then lambda=

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

Ifint_0^1cot^(-1)(1-x+x^2)dx=lambdaint_0^1tan^(-1)x dx ,then lambda is equal to 1 (b) 2 (c) 3 (d) 4

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=