Home
Class 14
MATHS
2 1/7+4 3/5-3 1/7+5 1/(10)=?...

`2 1/7+4 3/5-3 1/7+5 1/(10)=?`

A

`9 7/(10)`

B

`7 7/(10)`

C

`8 7/(10)`

D

`8 4/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2 \frac{1}{7} + 4 \frac{3}{5} - 3 \frac{1}{7} + 5 \frac{1}{10}\), we will first convert all mixed fractions into improper fractions, then perform the arithmetic operations step by step. ### Step 1: Convert Mixed Fractions to Improper Fractions 1. **Convert \(2 \frac{1}{7}\)**: \[ 2 \frac{1}{7} = \frac{2 \times 7 + 1}{7} = \frac{14 + 1}{7} = \frac{15}{7} \] 2. **Convert \(4 \frac{3}{5}\)**: \[ 4 \frac{3}{5} = \frac{4 \times 5 + 3}{5} = \frac{20 + 3}{5} = \frac{23}{5} \] 3. **Convert \(3 \frac{1}{7}\)**: \[ 3 \frac{1}{7} = \frac{3 \times 7 + 1}{7} = \frac{21 + 1}{7} = \frac{22}{7} \] 4. **Convert \(5 \frac{1}{10}\)**: \[ 5 \frac{1}{10} = \frac{5 \times 10 + 1}{10} = \frac{50 + 1}{10} = \frac{51}{10} \] ### Step 2: Substitute Back into the Expression Now we can rewrite the original expression: \[ \frac{15}{7} + \frac{23}{5} - \frac{22}{7} + \frac{51}{10} \] ### Step 3: Find a Common Denominator The denominators are 7, 5, and 10. The least common multiple (LCM) of these numbers is 70. ### Step 4: Convert Each Fraction to Have the Common Denominator 1. **Convert \(\frac{15}{7}\)**: \[ \frac{15}{7} = \frac{15 \times 10}{7 \times 10} = \frac{150}{70} \] 2. **Convert \(\frac{23}{5}\)**: \[ \frac{23}{5} = \frac{23 \times 14}{5 \times 14} = \frac{322}{70} \] 3. **Convert \(\frac{22}{7}\)**: \[ \frac{22}{7} = \frac{22 \times 10}{7 \times 10} = \frac{220}{70} \] 4. **Convert \(\frac{51}{10}\)**: \[ \frac{51}{10} = \frac{51 \times 7}{10 \times 7} = \frac{357}{70} \] ### Step 5: Combine the Fractions Now we can combine all the fractions: \[ \frac{150}{70} + \frac{322}{70} - \frac{220}{70} + \frac{357}{70} \] Combine the numerators: \[ = \frac{150 + 322 - 220 + 357}{70} = \frac{609}{70} \] ### Step 6: Convert Back to Mixed Fraction To convert \(\frac{609}{70}\) back to a mixed fraction: 1. Divide 609 by 70: - \(609 \div 70 = 8\) remainder \(49\) - Thus, \(\frac{609}{70} = 8 \frac{49}{70}\) ### Final Answer The final answer is: \[ 8 \frac{49}{70} \] This corresponds to the option \(8 \frac{7}{10}\) since \(\frac{49}{70} = \frac{7}{10}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

By what number should 1 3/4 be divided to get 2 1/2? 3/7 (b) 1 2/5 (c) 7/(10) (d) 1 3/7

5 1/7-{3 3/10-:[2 4/5-7/10]}

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

Simplify 3 1/3 -: 3/5-1/10 of 2 1/2+7/4

Find the difference: (i) 5/7-2/7 (ii) 5/6 - 3/4 (iii) 3 1/5-7/10 (iv) 7-4 2/3 (v) 3 3/10-1 7/15 (vi) 2 5/9-1 7/15

The value of (5 1/4 div 3/7 of 1/2)xx(5 1/4xx 3/7 div 1/2) div (5 1/4 div 3/7 xx 1/2) is :- (5 1/4 div 3/7 of 1/2)xx(5 1/4xx 3/7 div 1/2) div (5 1/4 div 3/7 xx 1/2) का मान है :

The value of 6 1/5-[4 1/2-{5/6-(3/5+3/10-7/15)} is 6 1/5-[4 1/2-{5/6-(3/5+3/10-7/15)} का मान क्या है ?

What should come next in the following number series 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1 6 5 4 3 2 1 1) 6 2) 4 3) 7 4) 5 5) None of these

4(1)/(3) - 3 (2)/3 -:1(1)/(3) + ? -: 3 (1)/(2) -: 1(1)/(5) =7