Home
Class 11
MATHS
If a=cis alpha , b= cis beta, c= cis gam...

If `a=cis alpha` , `b= cis beta`, `c= cis gamma` and `(a)/(b)+(b)/(c)+(c)/(a)=1` then `cos (alpha-beta)+cos (beta-gamma)+cos (gamma-alpha)=`

A

1

B

`-1`

C

0

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha, cos beta, cos gamma are the direction cosines fo a vector veca, then cos 2alpha + cos 2beta + cos 2gamma is equal to

cos alpha sin (beta-gamma)+cos beta sin (gamma-alpha) +cos gamma(sin alpha-beta)=

A line makes acute alpha, beta and gamma with the coordinate axes such that cos alpha . Cos beta = cos beta . Cos gamma = 2/9 and cos gamma . cos alpha = 4/9 , then cos alpha + cos beta + cos gamma =

Using properties of determinants prove that : {:|( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) |:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

Let A and B denote the statement : A : cosalpha + cosbeta + cosgamma = 0 , B : sinalpha + sinbeta + singamma = 0 If cos(beta - gamma) + (gamma - alpha) + cos (alpha - beta) =-3/2 , then :

If alpha , beta , gamma are the roots of x^3+px+q=0 , then the value of the determine |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| is

If alpha , beta and gamma are roots of the equations x^3+px+q=0 then the value of det : [(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)] is

If cos(alpha + beta) =0 , then sin (alpha- beta)= ________