Home
Class 11
MATHS
If n is an integer and z=cos theta+i si...

If n is an integer and `z=cos theta+i sin theta`, then `(z^(2 n)-1)/(z^(2 n)+1)=`

A

`"cos" n theta`

B

`"sin n theta`

C

`i "sin" n theta`

D

`i Tan n theta`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If a=cos theta+i sin theta then (1+a)/(1-a)=

(1+cos 2 theta)/(sin 2 theta)=cot theta

Prove that (sin theta+cos theta)/(sin theta- cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = ( 2sec^(2) theta)/(tan^(2) theta -1) .

If P_(n) = cos ^(n)theta + sin^(n)theta then 2. P_(6) - 3. P_(4) + 1 =

If x = cos theta cos phi + sin theta sin phi cos psi , y = cos theta sin phi - sin theta cos phi cos psi and z = sin theta sin psi , then x^(2) + y^(2) + z^(2) equals :

If cosec theta- sin theta = m and sec theta - cos theta = n , prove that: (m^(2)n)^(2/3)+(n^(2)m)^(2/3)=1 .

cot theta=sin 2 theta,(theta ne n pi), if theta

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

cot theta=sin 2 theta(theta neq n pi, n in z), if theta=

(1+cos theta+i sin theta)^(10)+(1+cos theta-i sin theta)^(10)=