Home
Class 11
MATHS
The real part of (1)/(1+cos theta+i sin ...

The real part of `(1)/(1+cos theta+i sin theta)` is

A

`sqrt2`

B

`1/(sqrt2)`

C

`- 1/2`

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The real part of (1-costheta + I sin theta)^(-1) is

Imaginary part of (1)/(1+cos theta-i sin theta) is

If x+i y=(1)/(1+cos theta+i sin theta) then x^(2)

(sin theta+i cos theta)^(9) =

The general value of theta which satisfies the equation (cos theta + i sin theta) (cos 3 theta + I sin 3 theta) ….. {cos(2n - 1) theta + I sin (2n - 1) theta} = 1 is

The real value of theta for which the expression is (1+icos theta)/(1-i cos theta) is a real number is

Given cot theta =(7)/(8) , then evaluate (i) ((1+sin theta )( 1-sin theta ))/( (1+cos theta )(1-cos theta )) " "(ii) cot^2 theta

For which value of an acute angle theta ,(i) ( cos theta )/( 1-sin theta ) +(cos theta )/( 1+sin theta ) =4 is true ? For which value of 0^(@) le theta le 90 ^(@) , above equation is not defined?

Find the value of the determinants (i) {:[( cos theta , -sin theta ),( sin theta , cos theta ) ]:}" " (ii) {:[( x^(2) -x+1,x-1),( x+1,x+1) ]:}