Home
Class 11
MATHS
The complex number ((-sqrt(3)+3i)(1-i))/...

The complex number `((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))` when represented in the Argand diagram is

A

in the second quadrant

B

in the first quadrant

C

on the Y -axis (imaginary axis )

D

on the X-axis (Real axis)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The complex numbers 1,-1, i sqrt(3) form

(sqrt(3)+i)^(6)+(sqrt(3)-i)^(6)=

(1+i sqrt(3))^(5)+(1-i sqrt(3))^(5)=

The value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6)=

sqrt(i)+sqrt((-i)) equals :

The argument of (1-i sqrt(3))/(1+i sqrt(3))=

The amplitude of (1+i)/(1+sqrt(3) i) is

Represent the complex number (2+6sqrt3i)/(5+sqrt3i) in polar form.

The modulus of (sqrt(3)+i)/((1+i)(1+sqrt(3) i)) is

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=