Home
Class 11
MATHS
If omega=(z)/(z-(i)(3)) and |omega|=1,...

If `omega=(z)/(z-(i)(3))` and `|omega|=1`, the z lies on

A

a parabola

B

a straight line

C

a circle

D

an ellipse

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

If |z^(2)-1|=|z|^(2)+1 , then z lies on :

If |z+bar(z)|+|z-bar(z)|=8 then z lies on

If |(z+i)/(z-i)|=sqrt(3) , then the radius of the circle is

If f(z)=(7-z)/(1-z^(2)), where z=1+2 i, then |f(z)| is

If the complex number z=x+ iy satisfies the condition |z+1|=1 , then z lies on

If |z|=1 and w=(z-1)/(z+1) (where z ne -1 ), then Re (w) is :

If |w|=1 , then the set of points z=w+(1)/(w) is contained in or equal to the set of points z satisfying

If x=a+b, y=a omega+b omega^(2), z=a omega^(2)+b omega , then x y z=

If z=x+iy and w=(1-iz)/(1+iz) , then |w|=1 implies that, in the complex plane