Home
Class 11
MATHS
If (n) is an odd positive integer and ...

If `(n)` is an odd positive integer and
`(1+x+x^(2)+x^(3))^(n) = sum_(r=0)^(3 n) a_(r) x^(r) ` then, `a_(0)-a_(1)+a_(2)-a_(3)+.. .-a_(3 n) =`

A

`4^0`

B

1

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2 x+x^(2))^(n)=sum_(r=0)^(2 n) a_(r) x^(r) , then a_(r) =

If (1+x+x^(2))^(n) = sum_(r=0)^(2 n) a_(r). x^(r) then a_(1)-2 a_(2)+3 a_(3)-..-2 n. a_(2n) =

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=

8,A_(1),A_(2),A_(3),24.

If (1+x-2 x^(2))^(6)=1+a_(1) x+a_(z) x^(2)+l .. .+a_(12) x^(12) then a_(2)+a_(4)+..+a_(12) =

If (1+x+x^(2))^(n) = a_(0)+a_(1) x+a_(2) x^(2)+..+a_(2 n) x^(2 n) then the value of a_(1)+a_(4)+a_(7)+.. . . is

If (1 +x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … + a_(2n) x^(2n) , then a_(0) + a_(2) + a_(4) + … + a_(2n) equals

If (1+x+x^(2))^(n) = a_(0)+a_(1) x+a_(2) x^(2)+.. .+a_(2 n) x^(2 n) then the value of a_(0)+a_(3)+a_(6)+.. . . is

If sin ^(3) x sin 3 x=sum_(r=0)^(n) a_(r) cos r x is an identity in x, then n=

If a_(1), a_(2) ,a_(3)"….." is an A.P. such that : a_(1) + a_(5) + a_(10)+a_(15)+a_(20)+a_(24)=225 , then a_(1) + a_(2)+a_(3) +"….." a_(23) + a_(24) is :