Home
Class 11
MATHS
The sum of series: ""^(20)C(0)-""^(20)...

The sum of series:
`""^(20)C_(0)-""^(20)C_(1)+""^(20)C_(2)-""^(20)C_(3)+ . . . +""^(20)C_(10)` is:

A

`^20C_10`

B

`^-20C_10`

C

`1/2^20C_10`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum (1)/(2)""^(10)C_(0)-""^(10)C_(1)+2.""^(10)C_(2)-2^(2)*""^(10)C_(3)+ . . .+2^(9)*""^(10)C_(10) equals:

20 C_(0)+20 C_(1)+20 C_(2)+.. .+20 C_(10) =

Value of 2C_(0)+(2^(2))/(2)C_(1)+(2^(3))/(3)C_(2)+ . . .+(2^(11))/(11)C_(10) is:

Sum to (n+1) terms of the series: (C_(0))/(2)-(C_(1))/(3)+(C_(2))/(4)-(C_(3))/(5)+ . . . is:

If 20C_(r) = 20C_(r-10) than 18C_(r)=

Evaluate: 20+(1)/(20+(1)/(20+(1)/(20+)))

The minimum sum of the series : 20 + 19(1)/(3)+ 18(2)/( 3) +"..." is :

The coefficient of x^(20) in (1+3 x+3 x^(2)+x^(3))^(20) is

If .^(20)C_(n+1) = ^ (n) C_(16) , then the value of n is