Home
Class 11
MATHS
If the expansion in powers of x of the f...

If the expansion in powers of x of the function `(1)/((1-ax)(1-bx))` is `a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ .. . . ` then `a_(n)` is:

A

`(a^(n+1)-b^(n+1))/(b-a)`

B

`(b^(n+1)-a^(n+1))/(b-a)`

C

`(b^n-a^n)/(b-a)`

D

`(a^n-b^n)/(b-a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+2 x+x^(2))^(n)=sum_(r=0)^(2 n) a_(r) x^(r) , then a_(r) =

The number of all possible triples (a_(1),a_(2),a_(3)) such that a_(1) + a_(2)cos2x + a_(3)sin^(2) x = 0 for all x is :

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=

If (1+x-2 x^(2))^(6)=1+a_(1) x+a_(z) x^(2)+l .. .+a_(12) x^(12) then a_(2)+a_(4)+..+a_(12) =

If a_(1) , a_(2),"………",a_(n) are n non-zero real numbers such that ( a_(1)^(2) +a_(2)^(2) + "........."+a_(n-1)^(2) ) ( a_(2)^(2) + a_(3)^(2) + "........"+a_(n)^(2))le(a_(1) a_(2) + a_(2) a_(3) +".........." +a_(n-1) a_(n))^(2), a_(1), a_(2),".........",a_(n) are in :

If the equation of the locus of a point equidistant from the points (a_(1), b_(1)) and (a_(2), b_(2)) is : (a_(1)-a_(2))x+(b_(1)-b_(2))y+c=0 , then c =

In the pair of linear equations a_(1)x+b_(1)y+c_(1)=0" and "a_(2)y+b_(2)y+c_(2)=0" if "a_(1)/a_(2) ne b_(1)/b_(2) then the

If n^(th) term of the sequences is a_(n)= (-1)^(n-1)5^(n+1) , Find a_(3) ?

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.

If (1+x+x^(2))^(n) = sum_(r=0)^(2 n) a_(r). x^(r) then a_(1)-2 a_(2)+3 a_(3)-..-2 n. a_(2n) =