Home
Class 11
MATHS
If s= sum(n=0)^(oo) a^(n) , y = sum(n=0)...

If `s= sum_(n=0)^(oo) a^(n) , y = sum_(n=0)^(oo) b^(n) , z= sum _(n=0)^(oo) c^(n)`, where a, b c are in A.P. and `|a| lt 1, |b|lt 1 , |c| lt 1 ` then x,y,z are in `:`

A

HP

B

AritIimetic-Geometric progression

C

AP

D

GP

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sum_(n=0)^(oo) a^(n) .,y=sum_(n=0)^(oo) b^(n) , z = sum_(n=0)^(oo) (ab)^(n) , where a,blt 1 , then :

sum_(r=0)^(m)( n+r )C_(n)=

For 0 lt theta lt ( pi )/(2) , if x = sum_(n=0)^(oo)cos^(2n) theta, y = sum_(n=0)^(oo) sin^(2n) theta ,z=sum_(n=0)^(oo)cos^(2n) theta sin^(2n) theta ,then :

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

lim_(n to oo) 1/(n^2) sum_(r = 1)^(n) re^(r//n) equals :

If a_n=sum_(r=0)^n1/(""^nC_r) , then sum_(r=0)^nr/(""^nC_r) equals :

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =