Home
Class 11
MATHS
If a, b, c are distinct positive real nu...

If a, b, c are distinct positive real numbers and `a^(2)+b^(2)+c^(2)=1`, then `ab+bc+ca` is :

A

A.P.

B

G.P.

C

H.P.

D

None

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b and c real numbers such that a^(2) + b^(2) + c^(2) = 1, then ab + bc + ca lies in the interval :

If a,b,c,d and p are distinct non -zero real numbers such that : ( a^(2) + b^(2) +c^(2))p^(2) - 2 ( ab + bc + cd) p + ( b^(2) + c^(2) + d^(2)) le 0 , then a,b,c,d :

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a,b,c,d are positive real numbers such that a+b+c +d = 12 , then M = ( a+ b ) ( c + d ) satisfies the relation :

If a,b,c,d are distinct integers in an A.P. such that d=a^(2)+b^(2)+c^(2) , then find the value of a+b+c+d.

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

If a,b,c are positive real numbers, then the roots of the equation ax^(2) + bx + c =0

Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)

Statement -1: If a,b,c are distinct real numbers in H.P, then a^(n)+c^(n)gt2b^(n)" for all "ninN . Statement -2: AMgtGMgtHM