Home
Class 12
MATHS
If A+B+C = pi , then the value of |(sin(...

If `A+B+C = pi` , then the value of `|(sin(A+B+C), sinB,cosC),(-sinB,0,tanA),(cos(A+B),-tanA,0)|` is equal to :

A

1

B

`-1`

C

sin A +sin B +sin C

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

sin(A-B)=sinA cos B-cosA sinB

If A + B+ C = 3 pi//2 , then the value of cos 2 A + cos 2 B + cos2 C is equal to

If A+B+C=pi , then cos B+cos C=

If A,B and C are angles of a triangle, then the determinant : |(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)| is equal to :

If sin A = sin B, cos A = cos B, then the value of A in terms of B is

If in a triangle A B C, a=5, b=4, A=(pi)/(2)+B , then the value of C is

(sinA-sinB)/(sinA+sinB)=tan((A-B)/2).cot((A+B)/2)

(sinA-sinB)/(sinA+sinB)=tan((A-B)/2).cot((A+B)/2)

Sin A.cos A.tanA+cosA.sinA.cotA is equal to:

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.