Home
Class 12
MATHS
Inverse of the matrix [[cos 2 theta,-sin...

Inverse of the matrix `[[cos 2 theta,-sin 2 theta],[sin 2 theta , cos 2 theta]]` is

A

`[(cos 2 theta, sin 2theta),(sin 2 theta,cos 2 theta)]`

B

`[(cos 2 theta, sin 2theta),(-sin 2 theta,cos 2 theta)]`

C

`[(cos 2 theta,- sin 2theta),(sin 2 theta,cos 2 theta)]`

D

`[(cos 2 theta, sin 2theta),(sin 2 theta,-cos 2 theta)]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The multiplicative inverse of : A = [(cos theta , -sin theta ),(sin theta , cos theta )] is :

If the matrix [[cos theta,sin theta,0],[sin theta,cos theta,0],[0,0,1]] is singular then theta=

Write the inverse of the matrix {:|(cos theta,sin theta),(-sin theta,cos theta)| .

|[4 sin ^2 theta, cos 2 theta],[ -cos 2 theta,cos ^2 theta]| =

(1+cos 2 theta)/(sin 2 theta)=cot theta

(sin 2 theta)/(1-cos 2 theta)=cot theta

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)