Home
Class 12
MATHS
If A=[[a1,b1,c1],[a2,b2,c2],[a3,b3,c3]] ...

If `A=[[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]]` and `B=[[ c_1,c_2,c_2],[a_1,a_2,a_3],[b_1,b_2,b_3]]` then

A

`B=A^2`

B

`B=0`

C

A=B

D

A=-B

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If D=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|andD'=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_1+qc_2,c_2+ra_2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| , then :

If A=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|andB=|{:(c_(1),c_(2),c_(3)),(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)):}| then

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

Let log_2N=a_1+b_1,log_3N=a_2+b_2 and log_5N=a_3+b_3 , where a_1,a_2,a_3notin1 and b_1,b_2 b_3 in [0,1) . If a_1=6,a_2=4 and a_3=3 ,the difference of largest and smallest integral values of N, is

If A=[(1,2,-3),(5,0,2),(1,-1,1)] , B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] thern compute (A+B) and (B-C). Also verify A+(B-C)=(A+B)-C.

The value of the determinant |[a_1, la_1+mb_1, b_1],[a_2, la_2+mb_2, b_2],[a_3, la_3+mb_3, b_3]|=

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)]andC=[(4,1,2),(0,3,2),(1,-2,3)] then compute (A + B) and (B - C). Also verify that A + (B - C) = (A + B) - C.

|[1, a, a^2-b c],[1,b, b^2-c a],[1,c, c^2-a b]|=

Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .