Home
Class 12
MATHS
The smallest positive integral value of ...

The smallest positive integral value of n such that `[(1+"sin"pi/8+i"cos"(pi)/8)/(1+"sin"(pi)/8-i"cos"(pi)/8)]^(n)` is purely imaginary is n=

A

8

B

4

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

((sin (pi/8)+i cos (pi/8))/(sin (pi/8)-i cos (pi/8)))^(8)=

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s

The smallest positive integer n for which (1+i)^(n) is purely imaginary is

The amplitude of "sin"(pi)/(5)+i(1-"cos"(pi)/(5)) is

The value of cos^(-1) ("cos" (5pi)/3)+sin^(-1) ("sin"(5pi)/3) is :

The principal value of cos^(-1) {1/sqrt2 ("cos"(9pi)/10 - "sin"(9pi)/10)} is :

Find the least positive integral value of n, for which ((1-i)/(1+i))^n , where i=sqrt(-1), is purely imaginary with positive imaginary part.

The value of : sin""(pi/7).sin""((3pi)/14).sin""((5pi)/14).sin""((7pi)/14) is :

Let n be a positive integer such that sin(pi/(2n))+cos(pi/(2n))=(sqrt(n))/2dot Then

lim_(nto oo){n" sin"(2pi)/(3n)."cos"(2pi)/(3n)} =