Home
Class 12
MATHS
If omega=-(1)/(2)+i (sqrt(3))/(2), the v...

If `omega=-(1)/(2)+i (sqrt(3))/(2)`, the value of `[[1, omega, omega^(2) ],[ omega, omega^(2), 1],[ omega^(2),1, omega]]` is

A

1

B

`-1`

C

3

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i (sqrt(3))/(2) , then the value of |[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]| is

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If 1, omega, omega^(2) are the cube roots of unity, then [[1, omega^(n),omega^(2n)],[omega^(n),omega^(2n),1],[omega^(2n), 1, omega^(n)]]

The value of (1+omega^(2)+2 omega)^(3 n)-(1+omega+2 omega^(2))^(3 n)=

If omega is the cube root of unity then {:abs((1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)):} is

Let omega be the complex number cos (2 pi)/(3)+i sin (2 pi)/(3) . Then the number of distinct complex number z satisfying [[z+1,omega,omega^(2)],[omega,z+omega^2,1],[omega^(2),1,z+omega]] = 0 is equal to

If omega is an imaginary cube root of unity, then the value of |[a,b omega^2,a omega],[b omega,c,b omega^2],[c omega^2, a omega,c]|

If omega is an imaginary cube root of unity then the value of [[1+omega , omega^2 , -omega],[1+omega^2 , omega , -omega^2 ],[omega^2+omega , omega , -omega^2 ]] =

If omega is a complex cube root of unity then a root of the equation |[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]|=0 is