Home
Class 12
MATHS
|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a)...

`|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)+b^(2),ab,a+b)|=`

A

ab+bc+ca

B

`1/(abc)(ab+bc+ca)`

C

10

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

If a^2+b^2+c^2=0 and |(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)|=ka^2b^2c^2 , then the value of k is :

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that abs{:(a^(2) + 1, ab , ac),(ab, b^(2) + 1, bc),(ca, cb, c^(2) +1):}=1 + a^(2) + b^(2) +c^(2)

Using the property of determinants and without expanding prove that {:|( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) |:} =4a^(2) b^(2) c^(2)

|(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|= 0

(a^(2)-b^(2))/(c^(2)-a^(2))=c/b . (sin(A-B))/(sin(C-A))