Home
Class 12
MATHS
The smallest positive integral value of ...

The smallest positive integral value of ' n ' such that
`[(1+sin (pi)/(8)+i cos (pi)/(8))(1+sin (pi)/(8)-i cos (pi)/(8))]^(n)` is purely imaginary is

A

8

B

4

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

((sin (pi/8)+i cos (pi/8))/(sin (pi/8)-i cos (pi/8)))^(8)=

The value of (1+cos (pi)/(8))(1+cos (3 pi)/(8))(1+cos (5 pi)/(8))(1+cos (7 pi)/(8)) is

The value of cos (pi)/(5) . cos (2 pi)/(5). cos (4 pi)/(5) . cos (8 pi)/(5) is

The value of (sin (pi/3)+i cos (pi/3))^(3) is

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s

One of the values of ((cos (pi)/(6)-i sin (pi)/(6))^(1 / 2))((cos (pi)/(6)+i sin (pi)/(6))^(1 / 2)) is

cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=

Let n be a positive integer such that sin(pi/(2n))+cos(pi/(2n))=(sqrt(n))/2dot Then

cos ((pi)/(4) - x) cos ((pi)/(4) -y) - sin ((pi)/(4) -x) sin ((pi)/(4) -y) = sin ( x +y)