Home
Class 12
MATHS
If x = (1-t^(2))/(1+t^(2)) and y = (2t)...

If ` x = (1-t^(2))/(1+t^(2))` and `y = (2t)/(1+t^(2))`then dy/dx =

A

`- x/y`

B

`x/y`

C

`-y/x`

D

`y/x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

if sinx =(2t)/(1+t^(2)) , tany= (2t)/(1- t^(2)) then (dy)/(dx) is equal to

If x = sqrt((1-t^(2))/(1+t^(2)) and y = (sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2)) + sqrt(1-t^(2))) then (d^(2)y)/(dx^(2)) =

int (1+t^(2))/(1+t^(4))dt =

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =