Home
Class 12
MATHS
If f(a)=2,f'(a)=1,g(a)=-3,g'(a)=-1 then ...

If `f(a)=2,f'(a)=1,g(a)=-3,g'(a)=-1` then `Lim_(xtoa)(f(a)g(x)-f(x)g(a))/(x-a)=`

A

1

B

6

C

`-5`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a)=2,f'(a)=1,g(a)=-,g'(a)=2 , then the value of lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is :

If f(a) = 2 , f ' (a) = 1 , g (a) = -1 , g'(a) = 2 , then lim_(x to a) (g (x) * f (a) - g (a) * f(x))/( x- a) is equal to

Let f(x), g(x) be differentiable functions and f(1) = g(1) = 2, then : lim_(x rarr 1) (f(1) g(x) - f(x) g(1) - f(1) + g(1))/(g(x) - f(x)) equals :

If function f(x) is differentiable at x=a , then lim_(xtoa)(x^(2)f(a)-a^(2)f(x))/(x-a) is :

If f(x)=2 x^(2)+x+1 and g(x)=3 x+1 then f o g(2)

Let f(a) = g(a) = k and their n^(th) order derivatives exist and are not equal for some n in N , further if lim_(x rarr a) (f(a)g(x)-f(a)-g(a) f(x)+g(a))/(g(x)-f(x)) = 4 then the value of k is

If f (x) is defined [-2, 2] by f(x)=4x^(2)-3x+1 and g(x)=(f(-x)-f(x))/((x^(2)+3)) , then int_(-2)^(2)g(x)dx=