Home
Class 12
MATHS
Ify = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x...

If`y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2))))` then dy/dx =

A

0

B

`x/(sqrt(1-x^4))`

C

`(x^2)/(sqrt(1-x^4))`

D

`(x^2)/(sqrt(1+x^4))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = y sqrt(1-y^(2)) , then dy/dx =

If x = sqrt((1-t^(2))/(1+t^(2)) and y = (sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2)) + sqrt(1-t^(2))) then (d^(2)y)/(dx^(2)) =

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

If sqrt(1-x^(2) ) + sqrt(1-y^(2)) = x-y , then dy/dx =

If y = sin^(-1) (x sqrt(1-x) - sqrtx sqrt(1-x^(2))) then dy/dx =