Home
Class 12
MATHS
If y = 2^(log x), then (dy)/(dx) is...

If `y = 2^(log x)`, then `(dy)/(dx)` is

A

`(2^(logx))/(log2)`

B

`(2^(logx)).log2`

C

`(2^(logx))/x`

D

`(2^(logx).log2)/x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(sin(log x)) , then dy/dx =

If y = sqrt(log x +y) then dy/dx =

If y = cos(log sin x), then dy/dx =

If y = log (log x), then (d^(2)y)/(dx^(2)) is equal to

If y = (log)^(cos x) find (dy)/(dx) .

If y = log log (log x), then dy/dx =

If y = log_(x) (log x) then (dy/dx)_(x = e) =

If y = log (log x) then (d^(2)y)/(dx^(2)) is equal to

If y= log (sin x)," find "(dy)/(dx) .