Home
Class 12
MATHS
If f(x)=be^(ax)+ae^(bx) , then f" (0) =...

If `f(x)=be^(ax)+ae^(bx)` , then f" (0) =

A

ab

B

ab(a+b)

C

2ab

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2f(x) = f^(')(x) and f(0) = 3, then f(2) =

If a lt 0, f(x) = e^(ax) + e^(-ax) and S = {x: f(x) is monotonically increasing} then S equals,

Let f(x) = (ax+b)/(cx + d), then f(x) has

If f(x) = ax+b and g(x) = cx+d then f(g(x)) = g(f(x)) is equivalent to

If f(x) = f(a - x) , then int_0^(a) xf(x) dx is equal to :

If a lt 0 , the function f(x)=e^(ax)+e^(-ax) is decreasing for all values of x, where

Let f(x) = (ax+b)/(cx+d) . Then fof(x) = x , then