Home
Class 12
MATHS
inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is eq...

`inte^(tan^(-1)x)(1+x/(1+x^(2)))dx ` is equal to

A

`xe^(Tan^(-1)x)+c`

B

`x/(1+x^2)e^(Tan^(-1)x)+c`

C

`(e^(Tan^(-1)x))/(1+x^2)+c`

D

`(1+x^2)e^(Tan^(-1)x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

int (e^(tan^(-1)x))/(1+x^2) dx .

int1/(1+e^(x))dx is equal to

int sqrt(1+x^(2))dx is equal to

int e^(tan-1)x((1+x+x^2)/(1+x^2))dx equals :

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

inte^(x)((1-x)/(1+x^(2)))^(2)dx equal to

int (dx)/(x(x^(n)+1)) is equal to :

int 1/(x(x^(7)+1)) dx is equal to