Home
Class 12
MATHS
int (sqrt(tan x) + sqrt(cot x)) dx is eq...

`int (sqrt(tan x) + sqrt(cot x)) dx` is equal to

A

`sqrt2tan^(-1)((tanx)/(sqrt(2tanx)))+c`

B

`sqrt2tan^(-1)((tanx-1)/(sqrt(2tanx)))+c`

C

`tanx/sqrt2tan^(-1)((cotx-1)/(sqrt(2tanx)))+c`

D

`tanx/sqrt2tan^(-1)((cotx-1)/(sqrt(2cotx)))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2)(sqrt(sin x))/(sqrt(sin x) + sqrt(cos x)) dx equals:

int sqrt(1+x^(2))dx is equal to

int(sqrt(tanx))/(sin x cos x)dx is equal to

int (sqrt(tanx)+sqrt(cotx)dx, x in (0,pi/2)

int sqrt(x^(2)+ 2x+5) dx is equal to

int sqrt(x^(2)+2x+5)dx is equal to

int (1)/(x - sqrt(x)) dx

int(sqrt(x) - 1/(sqrtx))^(2) dx .

int dx/(sqrt(3x+5)-sqrt(3x+2)) =

int_0^(pi//2) (sqrt( cot x))/(sqrt(cot x) - sqrt(tan x)) dx is :