Home
Class 12
MATHS
int (e^(x)-1)/(e^(x)+1) dx =...

`int (e^(x)-1)/(e^(x)+1) dx =`

A

`2log(e^x+1)+c`

B

`log(e^(2x)-1)`

C

`2log(e^x+1)-x`

D

`log(e^(2x)+1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(log (1/2))^(log2) sin ((e^(x)-1)/(e^(x)+1)) dx =

int(e^(2x) -1)/(e^(2x) + 1) dx

int e^(x)/(e^(x)+1) dx =

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

Let f(x) = (e^(x)+1)/(e^(x)-1) and int_0^(1)( (e^(x)+1)/(e^(x)-1)) x dx = lambda , then int_(-1)^(1) t f(t) dt =

int (dx)/(e^(x)+e^(-x)) dx =

int e^(x)/((2+e^(x))(e^(x) +1)) dx =

int sqrt(e^(x)-1)dx =

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int e^(e^(e^(x)))e^(e^(x))dx is equal to :