Home
Class 12
MATHS
If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))l...

If `f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c`, where c is the constant of integration, then `f(x)=`

A

`2/(abSin2x)`

B

`2/((b^2-a^2)Sin2x)`

C

`2/(abCos2x)`

D

`2/((b^2-a^2)Cos2x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If int f(x) sin xcos x dx=(1)/(2(b^(2)-a^(2)) *(log f(x))+C , where C is a costant of integration, then f(x)=

if int f (x ) sin x cos x dx = (1)/(2(b^(2) -a^(2)) log f(x ) + c where C is a constant of intergration then f(x) =

if int xe^(2x) dx = e^(2x).f(x)+c , where c is the constant of integration, then f(x) is

If f(x)cosx dx=(1)/(2)f^(2)(x)+c , then f(x) is :

If f(x)=sinx+cosx,g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain :

If f : R rarr R is a function defined by : f(x) = [x] c cos ((2x - 1)/(2))pi, where [x] denotes the greatest integer function, then 'f' is :

If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) and f'(a)g'(x)=c , where c is a constant, then : (f''(x))/(f(x))+(g''(x))/(g(x))+(2c)/(f(x)f(x)) is equal to :

If the three functions f(x),g(x) and h(x) are such that h(x)=f(x).g(x) and f'(x).g'(x)=c , where c is a constant then (f^('')(x))/(f(x))+(g^('')(x))/(g(x))+(2c)/(f(x)*g(x)) is equal to

If f(x)=(g(x))+(g(-x))/2+2/([h(x)+h(-x)]^(-1)) where g and h are differentiable functions then f'(0)