Home
Class 12
MATHS
If f(x) = (e^x)/(1 + e^x) , I1 = int(f(-...

If `f(x) = (e^x)/(1 + e^x) , I_1 = int_(f(-a))^(f(a)) x g {x(1 - x)} dx and I_2 = int_(f(-a))^(f(a)) g{x(1 - x)} dx`, then `(I_2)/(I_1)` is :

A

`-1`

B

`-2`

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

int (f^(')(x))/(f(x) log [f(x)]) dx =

Let I_(1) = int_a^(pi-a) xf (sin x) dx, I_(2) = int_a^(pi-a) f(sinx) dx then I_(2) is equal to

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then

If d/(dx) f(x) = g (x) , then int_a^b f(x) g(x) dx is:

If int_(-1)^(4) f(x) dx = 4 and int_(2)^(4) f(x) dx = 7 then int_2^(-1) f(x) dx =

If int f(x) dx = f(x) , then int {f(x)}^(2) dx =

Let f(x) = (e^(x)+1)/(e^(x)-1) and int_0^(1)( (e^(x)+1)/(e^(x)-1)) x dx = lambda , then int_(-1)^(1) t f(t) dt =

If 2f(x)- 3f(1/x) = x then int_1^(e) f(x) dx =