Home
Class 12
MATHS
lim(n rarr oo) [(n+1)/(n^(2)+1^(2) )+(n+...

`lim_(n rarr oo) [(n+1)/(n^(2)+1^(2) )+(n+2)/(n^(2)+2^(2))+(n^+3)/(n^(2)+3^(2))+.....1/n] =`

A

`pi/4+1/2log2`

B

`pi/4-1/2log2`

C

`-(pi/4+1/2log2)`

D

None

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) (nsqrt(n^(2)+1)-n) =

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) [1/(n+1)+1/(n+2)+…….+1/(2n)]=

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

lim_(n rarr oo) sum_(r=1)^(n) r/n^(2) sec^(2) (r^(2)/n^(2)) =

lim_(n rarr oo) n(sqrt(n^(2)+8)-n) =