Home
Class 12
MATHS
Let d/(dx) F(x) = ((e^(sin x))/(x)) , x ...

Let `d/(dx) F(x) = ((e^(sin x))/(x)) , x > 0`. If `int_1^4 3/x e^(sin x^3) dx = F(k) - F(1)`, then one of the possible values of k is :

A

63

B

64

C

16

D

32

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2) cos x e^(sin x) dx is :

If k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt , then the value of k is

d/dx ((3e^(x)+4)/(2e^(x)-3)) =

int sin^(-1)(3x-4x^(3)) dx =

If int e^(x) ((1-sinx)/(1-cos x)) dx = f(x) + c then f(x) =

If int (e^(x)-1)/(e^(x)+1) dx = f(x) + c then f(x) =

If int (e^(x)(1+sinx))/(1+cosx) dx = e^(x) f(x) + c then f(x) =

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

int (cos x-1)/(sin x+1) e^(x) dx =